GnatSigh News (all the news that fits)

- Final Exam 10:30-12:30 Thursday 9 June
- Early exam for those who asked: Tuesday 1:30-3:30pm meet in my office AAC 138 (directions on website)
- Website http://home.fnal.gov/~rocky/NS102/
- · Study from exams & homeworks
- · Don't memorize any equations!
- TA Review sessions on Tuesday and Wednesday time & place to be on website

They move
They have different apparent brightness
They have different colors
They change in brightness
They (galaxies) are redshifted

$$\frac{D}{200,000 \text{ AU}} = \frac{\text{seconds}}{\alpha}$$

$$\frac{D}{pc} = \frac{\text{seconds}}{\alpha}$$
1 AU

For light:
$$m_1 - m_2 = -2.5 \log (I_1/I_2)$$
"—" means smaller m is brighter!

$$\begin{split} m_H - m_F &= -2.5 \log \left(I_H / I_F \right) \\ -2.5 &= -2.5 \log \left(I_H / I_F \right) \\ 1 &= \log \left(I_H / I_F \right) \\ 10 &= I_H / I_F \\ I_H &= \frac{\text{Luminosity}_H}{4\pi R_H^2} \qquad I_F = \frac{\text{Luminosity}_F}{4\pi R_F^2} \\ \frac{I_H}{I_F} &= \frac{R_F^2}{R_H^2} \qquad 10 = \frac{R_F^2}{R_H^2} \qquad 3 = \frac{R_F}{R_H} \end{split}$$

Distances to other clusters

- · Construct H-R diagram for cluster
- Measure ∆m compared to HR diagram for Hyades
- Compute distance in terms of distance to Hyades
- · How far can you go?
- · Say most distant open observable cluster is Lastades

 Main sequence stars are not extremely bright... we need brighter "standard candle"

Intensity =
$$\frac{Luminosity}{4\pi R^2}$$

- RR Lyrae stars found in distant clusters we know the distance to via H-R fitting.
- RR Lyrae stars are identified because their light output changes regularly on a time scale of half to one day.
- They are brighter than the sun by about a factor of 100 and are <u>standard candles</u>. Can see farther away and use as standard candle.

Cepheids as distance indicators

For cepheids of known distance

Measure apparent magnitude of the cepheids

$$I = \frac{L}{4\pi R^2} \to \operatorname{know} L$$

- · Measure period of the cepheids
- Calibrate (if know period know L)

For cepheids of unknown distance

- Measure period....know L
- · Measure apparent magnitude

$$I = \frac{L}{4\pi R^2} \to \operatorname{know} R$$

Talking points in the Great Debate

- 1. Rotation of M101
- 2. Variable stars
- 3. Stars or gas
- 4. Spatial distribution & velocity

Doppler Shift

 $\lambda_0 = c\Delta t = \text{rest wavelength}$

 $\lambda = c \Delta t \pm v \Delta t = detected wavelength$

$$c \ \Delta t = \lambda_0 \qquad \Longrightarrow \qquad \lambda = \lambda_0 \pm \mathbf{v} \ \Delta t$$

$$\Delta t = \frac{\lambda_0}{c}$$
 \Rightarrow $\lambda = \lambda_0 \pm \frac{\mathbf{v}}{c} \lambda_0$

$$\lambda = \lambda_0 \left(1 \pm \frac{\mathbf{v}}{c} \right) \left| \begin{array}{l} + \to \text{ receding} & \text{ (longer } \lambda\text{)} \\ - \to \text{ approaching (shorter } \lambda\text{)} \end{array} \right.$$

The age of the elements

- Elements come in different isotopes (same # of protons, different number of neutrons)
- · Many isotopes are radioactive they decay
- If start with N(0) nuclei, after a time t, the number will be

$$N(t) = N(0) 2^{-t/\tau_{1/2}}$$

 $au_{1/2}$ is the <u>half-life</u>

Can use radioactive isotopes to date objects Radio dating nucleocosmochronology

We are not the center of the expansion of the universe Every galaxy sees the expansion

Cosmological Principle

The universe is the same everywhere

- no special point in the universe (no center)
- no special set of points (no edge)

The expansion of the universe is an explosion <u>of</u> space

<u>not</u>

an explosion into space

The universe does not expand <u>into</u> anything!

Nucleosynthesis

...the process of assembling nuclei either by nuclear fusion or nuclear fission.

<u>Big Bang nucleosynthesis (BBN):</u> within the first three minutes of the universe and is responsible for most of the deuterium, helium-4, helium-3, and lithium-7. No elements heavier than lithium could be formed.

<u>Stellar nucleosynthesis:</u> creates most of the heavier elements between lithium and iron.

<u>Supernova nucleosynthesis:</u> produces most of the elements heavier than iron.

<u>Cosmic ray spallation:</u> produces some light elements like lithium and boron.

Most of the universe is dark!

It ain't even normal stuff!

